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1. Introduction

Supersymmetry in sigma models is closely related to the geometry of target space [1]. In

particular, N = 2 models in four space-time dimensions require the target space geometry

to be hyperkähler [2]. Consequently, constructions of new N = 2 sigma models lead to new

hyperkähler metrics, a fact which has been extensively pursued in the Legendre transform

and hyperkähler quotient constructions [3, 4].

To fully utilize the relation to geometry, manifest N = 2 formulations are needed.

Projective superspace [5, 4] provides this, and has led to the discovery of a number of new
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multiplets that can be used to construct new hyperkähler metrics (see e.g. [6]). In [6] a

generalized Legendre transform was devised, that produces hyperkähler metrics.1

Among the projective supermultiplets, perhaps the most interesting one is the so-

called polar multiplet [6] which can be used to describe a charged U(1) hypermultiplet

coupled to a vector multiplet [7], and therefore is analogous to the N = 1 chiral superfield.

The polar multiplet2 is described by an arctic superfield Υ(ζ) and its complex conjugate

composed with the antipodal map ζ̄ → −1/ζ, the antarctic superfield Ῠ(ζ). It is required

to possess certain holomorphy properties on a punctured two-plane parametrized by the

complex variable ζ (the latter may be interpreted as a projective coordinate on CP 1).

When realized in ordinary N = 1 superspace, Υ(ζ) and Ῠ(ζ) are generated by an infinite

set of ordinary superfields:

Υ(ζ) =

∞
∑

n=0

Υnζn = Φ + Σ ζ + O(ζ2) , Ῠ(ζ) =

∞
∑

n=0

Ῡn(−ζ)−n . (1.1)

Here Φ is chiral, Σ complex linear,

D̄.

α
Φ = 0 , D̄2Σ = 0 , (1.2)

and the remaining component superfields are unconstrained complex superfields. Using the

polar multiplet, one can construct a family of 4D N = 2 off-shell supersymmetric nonlinear

sigma-models that are described in N = 1 superspace by the action

S[Υ, Ῠ] =
1

2πi

∮

dζ

ζ

∫

d8z K
(

Υ(ζ), Ῠ(ζ), ζ
)

, (1.3)

with the integration contour around the origin in C.

The unconstrained superfields Υ2,Υ3, . . . , and their conjugates, appear in the ac-

tion (1.3) without derivatives, and therefore they are purely auxiliary degrees of freedom.

Their role is to ensure a linearly realized N = 2 supersymmetry. In order to describe the

theory only in terms of the physical superfields Υ0 = Φ and Υ1 = Σ, one has to eliminate

all the auxiliary superfields using their equations of motion. The problem of elimination

of the auxiliary superfields is actually nontrivial, since one has to solve an infinite number

of nonlinear equations. So far it has been solved perturbatively only for a broad subclass

of the models (1.3) studied in [9 – 11], and also exact solutions have been found in special

cases [10 – 13]. Such a family is obtained by restricting K
(

Υ, Ῠ, ζ
)

→ K
(

Υ, Ῠ
)

in (1.3).

Then, the corresponding action can be viewed as a minimal N = 2 extension of the gen-

eral four-dimensional N = 1 supersymmetric nonlinear sigma model [1], with K(Φ, Φ̄) the

Kähler potential of a Kähler manifold M, and the physical superfields (Φ,Σ) parametriz-

ing the tangent bundle TM of the Kähler manifold [9]. Upon elimination of the auxiliary

superfields, the complex linear tangent variables Σ can be dualized (as a final step of the

generalized Legendre transform [6]) into chiral one-forms, such that the target space for

the model obtained turns out to be (an open domain of the zero section of) the cotangent

bundle T ∗M of the Kähler manifold [10, 11].

1The term “projective superspace” was coined in [7].
2The terminology “polar” and “(ant)arctic” multiplets was introduced in [8].

– 2 –



J
H
E
P
0
2
(
2
0
0
7
)
1
0
0

The perturbative procedure for the elimination of the auxiliary superfields, which was

originally described in [10], has recently been refined by one of us (SMK), see e.g. [14].

The scheme obtained is reminiscent of the mathematical techniques used to prove the

theorem [15] that, for a Kähler manifold M, a canonical hyperkähler structure exists, in

general, on an open neighborhood of the zero section of the cotangent bundle T ∗M.

As outlined in [10] and further elaborated in [13], for Hermitian symmetric spaces the

auxiliary fields may be eliminated exactly. In the present paper we make systematic use of

this fact. The method entails finding a particular solution to the auxiliary field equations at

the origin of M (in a normal coordinate system3 introduced in [16, 17]) and then relying on

the existence of holomorphic isometries and other special properties to extend the solution

to an arbitrary point. A key ingredient in this procedure is a coset representative of a

convenient form.

Let us end the introduction with a brief comment on related work. The first hy-

perkähler manifolds that are cotangent bundles of certain complex Grassmannians (gener-

alizations of the Calabi manifolds), were presented in [3]. Lately, massive versions of these

and related models have been discussed in [19 – 22] using N = 1 superspace and N = 2

harmonic superspace techniques [23]. In addition to these specific examples, some struc-

tural results for massive N = 2 sigma models have been obtained in N = 1 superspace [24]

and projective superspace [25].

The presentation of the paper is organized as follows. Section 2 describes the type of

N = 2 supersymmetric sigma models we are interested in and their background in pro-

jective superspace. In section 3 we construct the coset representatives needed for the four

types of compact Hermitian symmetric spaces. Section 4 contains the construction of the

sigma models for a Grassmann manifold and is followed in sections 5 and 6 by the con-

struction for the remaining three symmetric spaces. In section 7 we repeat the discussions

in section 3, but now for the non-compact versions of the spaces. The corresponding sigma

models occupy sections 8, 9 and 10. In two appendices we present derivations of results

needed in the general text.

The results obtained in the present paper admit a natural extension to 5D [14] and

6D [26, 27] projective superspace formulations.

2. Dynamical setup

This section sets the stage for our constructions of supersymmetric sigma models on sym-

metric spaces. In particular we introduce the relevant N = 2 extensions of N = 1 sigma

models and their origin in projective superspace.

Projective superspace is a superspace enlarged with a CP 1 at each point. The coor-

dinates thus include an additional projective coordinate ζ on this space. The larger space

allows for integrations over invariant subspaces, much like the chiral integrals in ordinary

superspace, and hence for manifest N = 2 actions. The integration measure contains a

contour integral over a closed curve in the complex ζ-plane which picks out the residue

3For such coordinates, the term “Kähler normal coordinates” was suggested in [18].
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from the Lagrangian. Projective superspace was introduced in [5, 4], and has been contin-

uously developed over the years. For a recent mathematically oriented description which

also elaborates the close relation to twistor space, see [28].

In this paper, we are interested in a family of 4D N = 2 off-shell supersymmetric

nonlinear sigma-models that are described in ordinary N = 1 superspace by the action

S[Υ, Ῠ] =
1

2πi

∮

dζ

ζ

∫

d8z K
(

ΥI(ζ), ῨĪ(ζ)
)

. (2.1)

These dynamical systems present themselves a subclass of the more general family of 4D

N = 2 off-shell supersymmetric nonlinear models [6] in projective superspace, given in

eq. (1.3). What is special about the model (2.1) is its interesting geometric properties [9 –

11]. It occurs as a minimal N = 2 extension of the general four-dimensional N = 1

supersymmetric nonlinear sigma model [1]

S[Φ, Φ̄] =

∫

d8z K(ΦI , Φ̄J̄) , (2.2)

with K the Kähler potential of a Kähler manifold M.

The extended supersymmetric sigma model (2.1) inherits all the geometric features of

its N = 1 predecessor (2.2). The Kähler invariance of the latter,

K(Φ, Φ̄) −→ K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) (2.3)

turns into

K(Υ, Ῠ) −→ K(Υ, Ῠ) + Λ(Υ) + Λ̄(Ῠ) (2.4)

for the model (2.1). A holomorphic reparametrization of the Kähler manifold,

ΦI −→ f I
(

Φ
)

, (2.5)

has the following counterpart

ΥI(ζ) −→ f I
(

Υ(ζ)
)

(2.6)

in the N = 2 case. Therefore, the physical superfields of the N = 2 theory

ΥI(ζ)
∣

∣

∣

ζ=0
= ΦI ,

dΥI(ζ)

dζ

∣

∣

∣

ζ=0
= ΣI , (2.7)

should be regarded, respectively, as coordinates of a point in the Kähler manifold and a

tangent vector at the same point. Thus the variables (ΦI ,ΣJ) parametrize the tangent

bundle TM of the Kähler manifold M [9].

To describe the theory in terms of the physical superfields Φ and Σ only, all the auxiliary

superfields have to be eliminated with the aid of the corresponding algebraic equations of

motion

∮

dζ

ζ
ζn ∂K(Υ, Ῠ)

∂ΥI
=

∮

dζ

ζ
ζ−n ∂K(Υ, Ῠ)

∂ῨĪ
= 0 , n ≥ 2 . (2.8)
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Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote a unique solution subject to the initial conditions

Υ∗(0) = Φ ,
.

Υ∗(0) = Σ . (2.9)

For a general Kähler manifold M, the auxiliary superfields Υ2,Υ3, . . . , and their con-

jugates, can be eliminated only perturbatively. Their elimination can be carried out using

the ansatz [14]

ΥI
n =

∞
∑

p=0

GI
J1...Jn+p L̄1...L̄p

(Φ, Φ̄)ΣJ1 . . . ΣJn+p Σ̄L̄1 . . . Σ̄L̄p , n ≥ 2 . (2.10)

Upon elimination of the auxiliary superfields, the action (2.1) takes the form [10, 11]

Stb[Φ, Φ̄,Σ, Σ̄] =

∫

d8z
{

K
(

Φ, Φ̄
)

− gIJ̄

(

Φ, Φ̄
)

ΣIΣ̄J̄

+

∞
∑

p=2

RI1···IpJ̄1···J̄p

(

Φ, Φ̄
)

ΣI1 . . . ΣIpΣ̄J̄1 . . . Σ̄J̄p

}

, (2.11)

where the tensors RI1···IpJ̄1···J̄p
are functions of the Riemann curvature RIJ̄KL̄

(

Φ, Φ̄
)

and

its covariant derivatives. Each term in the action contains equal powers of Σ and Σ̄, since

the original model (2.1) is invariant under rigid U(1) transformations [10]

Υ(ζ) 7→ Υ(eiαζ) ⇐⇒ Υn(z) 7→ einαΥn(z) . (2.12)

The process of eliminating the auxiliary fields from the action (2.1) and subsequently

performing a Legendre transform with respect to linear fields is called a generalized Legen-

dre transform [6]. For the theory with action Stb[Φ, Φ̄,Σ, Σ̄], this gives a dual formulation

involving only chiral superfields and their conjugates as the dynamical variables. Consider

the first-order action

Stb[Φ, Φ̄,Σ, Σ̄] +

∫

d8z
{

ψI ΣI + ψ̄ĪΣ̄
Ī
}

, (2.13)

where the tangent vector ΣI is now complex unconstrained, while the one-form ψI is chiral,

D̄.

α
ψI = 0. Upon elimination of Γ and Γ̄, with the aid of their equations of motion, the

action turns into

Scb[Φ, Φ̄, ψ, ψ̄] =

∫

d8z H(Φ, Φ̄, ψ, ψ̄) . (2.14)

Its target space is (an open domain of the zero section of) the cotangent bundle T ∗M of the

Kähler manifold M, and H(Φ, Φ̄, ψ, ψ̄) the corresponding hyperkähler potential [10, 11].

For Hermitian symmetric spaces, the auxiliary superfields can in principle be elimi-

nated exactly, as outlined in [10]. Here we present a more elaborated procedure following

mainly [13].

Given a Kähler manifold M, and an arbitrary point p0 ∈ M, one can construct a

Kähler normal coordinate system with the origin at p0 [16, 17] (see also [18] for a more

recent discussion). Such a system is characterized by the conditions imposed at p0:

KI1...In J̄ = KI J̄1...J̄n
= 0 , n > 1 ,

KI1...In
= KJ̄1...J̄n

= 0 ,

KIJ̄ = δIJ̄ . (2.15)
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The specific feature of Hermitian symmetric spaces is that, in addition, more conditions

hold:

KI1...Im J̄1...J̄n
= 0 , m 6= n . (2.16)

These conditions imply that the Kähler potential is invariant under arbitrary U(1) phase

transformations, K(eiα Φ, e−iα Φ̄) = K(Φ, Φ̄), and therefore K(Φ, Φ̄) = F (Φ Φ̄), with

F (Φ Φ̄) a real analytic function.

In accordance with [10, 11], for any Hermitian symmetric space M one can find the

solution Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) to the equations of motion (2.8) in a closed form. Let

Υ0(ζ) denote the value of Υ∗(ζ) at the origin of the Kähler normal coordinate system,

Υ0(ζ) = Υ∗(ζ; Φ = 0, Φ̄ = 0,Σ0, Σ̄0), with Σ0 a tangent vector at the origin. It is easy to

check that

Υ0(ζ) = Σ0 ζ , Ῠ0(ζ) = −
Σ̄0

ζ
(2.17)

solve the equations (2.8) at Φ = 0 and respect the initial conditions. A next step is

to distribute this solution to any point Φ of the manifold M, that is to make use of

Υ∗(ζ; Φ = 0, Φ̄ = 0,Σ0, Σ̄0) in order to obtain Υ∗(ζ; Φ, Φ̄,Σ, Σ̄).

Let G be the isometry group of the Hermitian symmetric space M. It acts transitively

on M by holomorphic transformations. Without loss of generality, we can always choose

the open domain U , on which the Kähler normal coordinate system is defined, to be

simply connected. Then, we can construct a coset representative, S: U → G, defined to

be a holomorphic isometry transformation S(p): M → M such that

S(p) p0 = p , S(p) ∈ G ,

for any point p ∈ U . In other words, S(p) maps the origin to p. In local coordinates,

S(p) = S(Φ, Φ̄), and it acts on a generic point q ∈ U parametrized by complex variables

(ΨI , Ψ̄J̄ ) as follows:

Ψ → Ψ′ = f(Ψ;Φ, Φ̄) , f(0;Φ, Φ̄) = Φ . (2.18)

Now, we should point out that the holomorphic isometry transformations leave the equa-

tions (2.8) invariant. This means that applying the group transformation S(Φ, Φ̄) to Υ0(ζ),

eq. (2.17), gives

Υ0(ζ) → Υ∗(ζ) = f(Υ0(ζ); Φ, Φ̄) = f(Σ0 ζ; Φ, Φ̄) , Υ∗(0) = Φ . (2.19)

Imposing the second initial condition in (2.9),

ΣI = ΣJ
0

∂

∂ΨJ
f I(Ψ;Φ, Φ̄)

∣

∣

∣

Ψ=0
, (2.20)

we are in a position to uniquely express Σ0 in terms of Σ and Φ, Φ̄. By construction, Σ is

a complex linear superfield constrained as in (1.2). As to Σ0, it obeys a generalized linear

constraint that follows from (2.20) by requiring D̄2Σ = 0.
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Our consideration shows that Υ∗(ζ) is independent of Σ̄, i.e. Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ),

for all Hermitian symmetric spaces. The same conclusion also follows from the fact that, in

the case of Hermitian symmetric spaces, the algebraic equations of motion are equivalent

to the holomorphic geodesic equation (with complex evolution parameter) [10, 11]

d2ΥI
∗(ζ)

dζ2
+ ΓI

JK

(

Υ∗(ζ), Φ̄
) dΥJ

∗ (ζ)

dζ

dΥK
∗ (ζ)

dζ
= 0 , (2.21)

under the same initial conditions (2.9). Here ΓI
JK(Φ, Φ̄) are the Christoffel symbols for the

Kähler metric gIJ̄(Φ, Φ̄) = ∂I∂J̄K(Φ, Φ̄).

A crucial element in the above scheme, for the Hermitian symmetric spaces, is the coset

representative S(Φ, Φ̄). There is huge freedom in its choice, since it can always be replaced

by S(Φ, Φ̄) → S(Φ, Φ̄)h(Φ, Φ̄), with h(Φ, Φ̄) an arbitrary function taking its values in the

stability group H of the origin, Φ = 0. It is extremely important to use this freedom to

choose the “correct” coset representative, since our final aim is to compute the tangent

bundle action

Stb[Φ, Φ̄,Σ, Σ̄] =
1

2πi

∮

dζ

ζ

∫

d8z K
(

Υ∗(ζ), Ῠ∗(ζ)
)

. (2.22)

With a complicated coset representative chosen, it will be practically impossible to do the

contour integral on the right. In what follows, we will construct such a “correct” coset

representatives for four series of compact Hermitian symmetric spaces, and then extend

the results to the non-compact case.

3. Algebraic setup: compact case

This section is devoted to the construction of coset representatives for the four series of

irreducible compact Hermitian symmetric spaces.

3.1 The symmetric space U(n + m)/U(n) × U(m)

The complex Grassmannian Gm,n+m(C) = U(n + m)/U(n) × U(m) is defined to be the

space of m-planes through the origin in C
n+m. Its elements can be considered to be the

equivalence classes of complex (n + m) × m matrices of rank m,

x = (xI
β) =

(

xi
β

xαβ

)

=

(

x̃

x̂

)

, i = 1, . . . , n α, β = 1, . . . ,m (3.1)

defined modulo arbitrary transformations of the form

x → x g , g ∈ GL(m, C) . (3.2)

By applying such a transformation one can turn x into a matrix u constrained by

u†u =
�

m . (3.3)
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In other words, the m vectors uβ = (uI
β) form an orthonormal basis on the m-plane. Then,

the ‘gauge’ freedom (3.2) reduces to

u → u g , g ∈ U(m) . (3.4)

Consider the open domain in Gm,n+m(C) singled out by the condition det û 6= 0 (an

open coordinate chart in the Grassmann space). Then, we can uniquely represent

û = s h , s† = s = (sαβ) , h = (hα
β) ∈ U(m) , (3.5)

with s being a positive definite Hermitian matrix. Equivalently we have

û û† = s2 , û†û = h−1s2 h . (3.6)

Eq. (3.3) becomes

ũ†ũ + û†û = ũ†ũ + h−1s2 h =
�

m . (3.7)

It is worth pointing out that the ‘gauge’ freedom (3.4) can be completely fixed by setting

h =
�

m.

Introduce an Hermitian (n + m) × (n + m) matrix F (u),

F =

(

x
�

n + ũΛũ† ũh−1

h ũ† s

)

= F † , Λ = λ(h−1s h) = h−1λ(s)h , Λ† = Λ . (3.8)

Here x is a real number, and λ(s) some function. We require F (u) to be unitary,

F † F =
�

n+m .

This can be shown to hold if

λ(s) = −
x
�

m + s
�

m − s2
, x2 = 1 . (3.9)

We have to choose

x = −1 −→ λ(s) =

�
m

�
m + s

, (3.10)

in order for λ(s) to be well defined at s0 =
�

m. Here s0 corresponds to

u0 =

(

ũ0

û0

)

=

(

0
�

m

)

. (3.11)

The crucial property of F (u) is that it maps u0 to the equivalence class containing u:

F (u)u0 =

(

ũh−1

s

)

∼

(

ũ

û

)

= u . (3.12)

Let us point out that the matrix F (u) is invariant under the ‘gauge’ transformations (3.4).

– 8 –
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It is useful to replace F (u) by

G(u) = F (u)

(

−
�

n 0

0
�

m

)

=

(

�
n − ũh−1λ(s)hũ† ũh−1

−hũ† s

)

. (3.13)

This matrix has the property that G(u0) =
�

n+m. In the case m = 1, the matrix G is

unimodular, G(u) ∈ SU(n + 1), as can be checked using the identity

det

(

A B

C D

)

= det(A − B D−1C) det D . (3.14)

Similar arguments can be used to show G(u) ∈ SU(n + m) in the case n ≥ m.

Let us introduce local complex coordinates, Φ = (Φiα), in the Grassmann manifold

u =

(

ũ

û

)

→

(

ũ û−1

�
m

)

=

(

ũ h−1s−1

�
m

)

≡

(

Φ
�

m

)

. (3.15)

Eq. (3.7) is equivalent to

Φ†Φ +
�

m = s−2 . (3.16)

By construction, the variables Φ are invariant under the transformations (3.4). Since the

coset representative (3.13) is also invariant under (3.4), the matrix elements of G(u) depend

solely on Φ and its conjugate:4

G(u) = G(Φ, Φ̄) =

(

�
n − Φ s λ(s) s Φ† Φ s

−s Φ† s

)

. (3.17)

Given an element of the isometry group,

g =

(

A B

C D

)

∈ U(n + m) , (3.18)

it acts on a generic point (in the coordinate chart) of the Grassmann space

v =

(

ṽ

v̂

)

∼

(

z
�

m

)

(3.19)

by the holomorphic fractional linear transformation

(

z
�

m

)

→

(

z′
�

m

)

, z′ = (Az + B) (C z + D)−1. (3.20)

Choosing here g = G(Φ, Φ̄) gives the action of the coset representative on the manifold.

4In the case m = 1, coset representative (3.17) reduces to that used in [11] to derive the tangent bundle

formulation for the N = 2 supersymmetric sigma model (2.1) associated with CP n.
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Keeping in mind subsequent applications, let us describe a slightly different form for

the coset representative (3.17). Along with the matrix s, eq. (3.16), we can introduce

s2 =

�
n

ΦΦ† +
�

n

, (3.21)

with the properties

Φ s = s Φ, Φ† s = s Φ† . (3.22)

Then, the coset representative (3.17) can be rewritten as follows:

G(Φ, Φ̄) =

(

s Φ s

−Φ† s s

)

. (3.23)

This coset representative is well-known in the literature, see e.g. [29], and can be viewed

as a generalization of the Wigner construction [30] used in his classification of the unitary

representations of the Poincaré group.

3.2 The symmetric spaces SO(2n)/U(n) and Sp(n)/U(n)

As is known [31, 32] (see also [33] for a related discussion), the Hermitian symmetric spaces

SO(2n)/U(n) and Sp(n)/U(n) can be realized as quadrics in the Grassmannian Gn,2n(C),

xT
J ε x = 0 , (3.24)

where

J ε =

(

0
�

n

ε
�

n 0

)

, ε =

{

+ , for SO(2n)/U(n) ,

− , for Sp(n)/U(n) .
(3.25)

The submanifold (3.24) is invariant under the action of O(2n) for ε = +1, and Sp(n) for

ε = −1, with these groups realized as follows:

g =

(

A B

C D

)

∈ U(2n) , gT
J ε g = J ε . (3.26)

The two conditions (3.26) imply

Ā = D , C̄ = εB , (3.27)

with F̄ denoting the complex conjugate of a matrix F .

In the complex local coordinates (3.15), eq. (3.24) takes the form

ΦT + εΦ = 0 . (3.28)

In this case, eq. (3.16) can be rewritten as

�
n + Φ†Φ =

�
n − ε Φ̄ Φ = s−2 , (3.29)
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and for the matrix s, eq. (3.21), we obtain

s = s̄ . (3.30)

Finally, the coset representative (3.23) turns into

Gε(Φ, Φ̄) =

(

s̄ Φ s

εΦ̄ s̄ s

)

, Gε(Φ, Φ̄) ∈

{

U(2n) ∩ SO(2n) , ε = 1 ,

U(2n) ∩ Sp(n) , ε = −1 .
(3.31)

Its crucial property is that it maps

(

0
�

n

)

→ G(Φ, Φ̄)

(

0
�

n

)

=

(

Φ s

s

)

∼

(

Φ
�

n

)

. (3.32)

3.3 The symmetric space SO(n + 2)/SO(n) × SO(2)

In accordance with [32, 34], the Hermitian symmetric space5 SO(n + 2)/SO(n) × SO(2)

is holomorphically equivalent to the complex quadric hypersurface Qn(C) in the projec-

tive space CPn+1, and real-analytically isomorphic to the oriented Grassmann manifold

G̃2,n+2(R). Let us recall the relevant geometric constructions.

Consider the projective space CPn+1 = G1,n+2(C). Its elements are non-zero complex

(n + 2)-vectors,

Z = (ZI) 6= 0 , I = 1, . . . , n + 2 , (3.33)

defined modulo the equivalence relation

Z ∼ λZ , λ ∈ C
∗ = C − {0} . (3.34)

The complex quadric Qn(C) is the following hypersurface in CPn+1:

Qn(C) =
{

ZTZ = (Z1)2 + (Z2)2 + · · · + (Zn+2)2 = 0 , Z ∈ CPn+1
}

. (3.35)

Let X and Y be the real and imaginary parts of Z, respectively,

Z = X + iY . (3.36)

On the quadric surface, Z ∈ Qn(C), the real (n + 2)-vectors X and Y obey the relations

XTX = Y TY 6= 0 , XTY = Y TX = 0 . (3.37)

In other words, considered as element of Euclidean space R
n+2, the non-zero vectors X

and Y have the same length and are orthogonal to each other. Therefore, they are linearly

independent. At this point, it is useful to introduce the (n + 2) × 2 matrix of rank 2:

x = (xI
β) , X = (xI

1) , Y = (xI
2) . (3.38)

5This space is irreducible for n > 2.
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Clearly, this matrix defines a two-plane through the origin in R
n+2. Now, the rela-

tions (3.37) can be rewritten as

xTx = α
�
2 , α =

1

2
tr(xTx) > 0 , (3.39)

while the equivalence relation (3.34) turns into

x ∼ x g , g ∈ R
+ × SO(2) , (3.40)

with R
+ the multiplicative group of positive real numbers.

The real realization for Qn(C) considered above, makes obvious a relationship of

this manifold to the oriented Grassmannian G̃2,n+2(R) – the space of oriented two-planes

through the origin in R
n+2. The elements of G̃2,n+2(R) can be identified with the equiva-

lence classes of real (n + 2) × 2 matrices of rank 2,

x = (xI
β) =

(

xi
β

xαβ

)

=

(

x̃

x̂

)

, i = 1, . . . , n α, β = 1, 2 (3.41)

with respect to the equivalence relation

x ∼ x g , g ∈ GL+(2, R) . (3.42)

Indeed, since x is of rank 2, the matrix xTx is positive definite. Then, by applying a

transformation of the form x → x g, with g ∈ GL+(2, R), one can always make x obey

eq. (3.39). Hence, we can identify Qn(C) with G̃2,n+2(R).

Given a matrix x ∈ G̃2,n+2(R), its equivalence class contains a matrix

u = (uI
β) =

(

ũ

û

)

(3.43)

constrained by

uT u = ũTũ + ûTû =
�
2 . (3.44)

Such a matrix defines an orthonormal basis on the two-plane chosen. In what follows, we

deal with such matrices only, within each equivalence class, when studying various aspects

of the Grassmann manifold. Under eq. (3.44), the equivalence relation (3.42) reduces to

u ∼ u g , g ∈ SO(2) . (3.45)

Let Un+1,n+2 be the open domain in G̃2,n+2(R) singled out by the condition det û 6= 0

(an open coordinate chart in the Grassmann manifold). It consists of the two components

with empty intersection: (i) U
(+)
n+1,n+2 in which det û > 0; and (i) U

(−)
n+1,n+2 in which

det û < 0. They are mapped on each other, say, by a rotation through angle π in the

(n, n + 1) plane in R
n+2. For our purposes, it will be sufficient to consider the chart

U
(+)
n+1,n+2 only. Then, we can represent

û = s h , s = sT = (sαβ) , h ∈ SO(2) , (3.46)
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with s positive definite.

Given a matrix u ∈ U
(+)
n+1,n+2, we can associate with it the following SO(n + 2)-

transformation:

G(u) =

(

�
n − ũh−1λ(s)hũT ũh−1

−h ũT s

)

, λ(s) =

�
2

�
2 + s

. (3.47)

The crucial property of G(u) is

G(u)u0 =

(

ũh−1

s

)

, u0 =

(

ũ0

û0

)

=

(

0
�
2

)

. (3.48)

It is time to let the complex structure, which is intrinsically defined on Qn(C), enter

the scene. Let us proceed by introducing a complex (n + 2)-vector of the form

w = (wI) := (uI
1 + iuI

2) =

(

w̃

ŵ

)

≡

(

ϕ

z

)

, ϕ = (ϕi) , z =

(

z1

z2

)

. (3.49)

Then, the relations encoded in (3.44) are rewritten as

wTw = ϕTϕ + (z1)
2 + (z2)

2 = 0 , (3.50)

w†w = ϕ†ϕ + |z1|
2 + |z2|

2 = 2 . (3.51)

The equivalence relation (3.45) turns into

w ∼ ei σw , σ ∈ R . (3.52)

In what follows, we choose the gauge condition h =
�
2. Recall that s = sT is positive

definite, that is

s =

(

s11 s12

s12 s22

)

, s11 > 0 , s22 > 0 , s11s22 − (s12)
2 > 0 . (3.53)

These results tell us that both the components of z,

(

z1

z2

)

:=

(

(s h)11 + i (s h)12
(s h)12 + i (s h)22

)

=

(

s11 + i s12

s12 + i s22

)

, (3.54)

are non-vanishing, z1,2 6= 0. If we further introduce new variables

z± = z1 ± i z2 , (3.55)

then one obtains6

z− = z− = s11 + s22 > 0 ,
∣

∣

∣

z+

z−

∣

∣

∣

2
< 1 . (3.56)

6In deriving eq. (3.56), we have fixed the gauge freedom (3.52) by imposing the condition h = �2. In

general, the expression for z− is as follows: z− = ei σ(s11 + s22), with σ a real parameter.
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Finally, introducing projective variables

Φ =
ϕ

z−
, ρ =

z+

z−
, (3.57)

the equations (3.50) and (3.51) turn into

ΦTΦ + ρ = 0 , (3.58)

2Φ†Φ + 1 + |ρ|2 =
4

(z−)2
. (3.59)

Eq. (3.56) and (3.58) tell us

|ΦTΦ| < 1. (3.60)

Let us consider an isometry transformation g ∈ SO(n + 2).

g =

(

A B

C D

)

, gT g =
�
. (3.61)

The linear action u → u′ = gu induces the holomorphic fractional linear transformation

Φ → Φ′ =
{

(1,−i)
(

C Φ + D Γ(Φ)
)}−1{

AΦ + B Γ(Φ)
}

,

Γ(Φ) =
1

2

(

1 − ΦTΦ

i(1 + ΦTΦ)

)

. (3.62)

Here we have used the fact that z− transforms as follows:

z′−
z−

= (1,−i)
(

C Φ + D Γ(Φ)
)

≡ eΛ(Φ) . (3.63)

Unlike z−, its transform z′− is no longer real, but its phase is a gauge degree of freedom.

The Kähler potential [35 – 37] is

K(Φ, Φ̄) =
1

2
ln

(

1 + 2Φ†Φ + |ΦTΦ|2
)

. (3.64)

Under the holomorphic isometry transformation (3.62), it changes as

K(Φ′, Φ̄′) = K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) , (3.65)

with Λ(Φ) given in (3.63). This can be seen from the identity

1 + 2Φ′†Φ′ + |ρ′|2 =
(

1 + 2Φ†Φ + |ρ|2
)

∣

∣

∣

z−
z′−

∣

∣

∣

2
, (3.66)

in conjunction with eq. (3.63).

Let us turn to the problem of expressing the coset representative (3.47) in terms of the

complex coordinates introduced above. In the gauge h =
�
2 we can rewrite G(u) as

G(Φ, Φ̄) =

(

s ũ

−ũT s

)

≡

(

A B

C D

)

, (3.67)
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where

s2 =
�

n − ũ ũT , s2 =
�
2 − ũTũ . (3.68)

For the matrix blocks in (3.67) we then get

A =

√

�
n −

z2
−

2
(ΦΦ† + Φ̄ΦT) ,

B =
1

2
z−(Φ , Φ̄) γ , C = −

1

2
z−γ†

(

Φ†

ΦT

)

,

D =
1

2
γ†

√

�
2 −

z2
−

2
∆γ , (3.69)

where

γ =

(

1 − i

1 i

)

, ∆ =

(

Φ†Φ ΦTΦ

ΦTΦ Φ†Φ

)

. (3.70)

One can easily check that D can be rewritten as

D =
1

4
z−γ†Fγ , F =

(

1 −ΦTΦ

−ΦTΦ 1

)

. (3.71)

Furthermore it is useful to verify the following relations
(

Φ†

ΦT

)

A =
1

2
γDγ†

(

Φ†

ΦT

)

=
1

2
z−F

(

Φ†

ΦT

)

, (3.72)

and

ATA =
�

n − z2
−(Φ, Φ̄)

(

Φ†

ΦT

)

. (3.73)

Equation (3.59) gives the expression for z− in terms of Φ and its conjugate. The

isometry transformation G(Φ, Φ̄) ∈ SO(n+2) maps the origin, Φ0 = 0, to the point Φ. On

a generic point Υ of the symmetric space, it acts by the rule:

Υ → Υ′ =
{

(1,−i)
(

C Υ + D Γ(Υ)
)}−1{

AΥ + B Γ(Υ)
}

, (3.74)

with the two-vector Γ(Υ) defined similarly to (3.62).

4. The (co)tangent bundle over U(n + m)/U(n) × U(m)

Here we apply the procedure described in section 2 to the case of Grassmann manifolds

Gm,n+m(C) = U(n + m)/U(n) × U(m). In accordance with section 2, the tangent bundle

action is

S =
1

2πi

∮

dζ

ζ

∫

d8z K(Υ, Υ̌) , (4.1)
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with K(Φ, Φ̄) the Kähler potential.

In the case of the Grassmannian Gm,n+m(C), the Kähler potential (see, e.g. [38]) is

K(Φ,Φ†) = ln det(
�

m + Φ†Φ) = ln det(
�

n + ΦΦ†) , (4.2)

where Φ = (Φiα) and Φ† = (Φ̄ᾱī), with Φ̄ᾱī = Φiα. It will be assumed that the indices can

be raised and lowered using the ‘flat metrics’ δαβ̄ and δij̄ , and their inverses, in particular

Φ̄ᾱī = Φ̄α
ī = Φ̄αi = Φ̄ᾱ

i. The Kähler metric can readily be shown to be

giα,β̄j̄ =
(

�
m

�
m + Φ†Φ

)

αβ̄

{

δj̄i −
(

Φ

�
m

�
m + Φ†Φ

Φ†
)

j̄i

}

=
(

�
n

�
n + ΦΦ†

)

j̄i

{

δαβ̄ −
(

Φ†

�
n

�
n + ΦΦ†

Φ
)

αβ̄

}

=
(

�
m

�
m + Φ†Φ

)

αβ̄

(

�
n

�
n + ΦΦ†

)

j̄i
, (4.3)

where we have used the identities
�

n
�

n + ΦΦ†
Φ = Φ

�
m

�
m + Φ†Φ

, Φ†

�
n

�
n + ΦΦ†

=

�
m

�
m + Φ†Φ

Φ† . (4.4)

With the choice

K(Υ, Ῠ) = ln det(
�

m + ῨTΥ) = ln det(
�

n + ΥῨT) (4.5)

in action (4.1), the equations of motion for the auxiliary superfields are
∮

dζ

ζ
ζn

(

�
m + ῨT

∗ Υ∗

)−1
ῨT

∗ = 0 , n ≥ 2 . (4.6)

As explained in section 2, one can easily check that (2.17) solve the equations (4.6). Ac-

cording to (2.19), we can obtain the solution at any point of the base manifold. Acting by

the coset representative (3.13) on (2.17), we obtain

Υ∗ =
{

(
�

n − Φλs2Φ†)Σ0ζ + Φs
}

(−sΦ†Σ0ζ + s)−1 . (4.7)

From here we read off the tangent vector at Φ

Σ ≡
∂Υ∗

∂ζ

∣

∣

∣

∣

∣

ζ=0

= (
�

n − Φλs2Φ† + ΦsΦ†)Σ0s
−1 = (

�
n + ΦλsΦ†)Σ0s

−1

= s−1Σ0 s−1 . (4.8)

This result allows us to express Σ0 in terms of Σ. Let us substitute the solution (4.7) into

the potential (4.5). Then we have

K(Υ∗, Ῠ∗) = ln det
(

�
m + ῨT

∗ Υ∗

)

= ln det
(

�
m + Φ†Φ − s−1Σ†

0Σ0s
−1

)

− ln det
(

�
m +

1

ζ
s−1Σ†

0Φs
)

− ln det
(

�
m − sΦ†Σ0s

−1ζ
)

. (4.9)

– 16 –



J
H
E
P
0
2
(
2
0
0
7
)
1
0
0

Here we have used eqs. (3.10) and (3.16), and their corollary

Φs2Φ† + (
�

n − Φλs2Φ†)2 =
�

n . (4.10)

The expression in the last line of (4.9) does not contribute to the action (4.1) where the

ζ integral only singles out the constant part, and it will not be written down explicitly in

what follows. Now, eq. (4.8) implies s−1Σ†
0 = Σ†s and Σ0s

−1 = sΣ, and hence

K(Υ∗, Ῠ∗) = ln det
(

�
m + Φ†Φ − Σ†(

�
n + ΦΦ†)−1Σ

)

+ . . .

= K(Φ,Φ†) + ln det
(

�
m − (

�
m + Φ†Φ)−1Σ†(

�
n + ΦΦ†)−1Σ

)

+ . . . , (4.11)

with K(Φ,Φ†) the Kähler potential of the base manifold, eq. (4.2). Evaluated at Υ∗ and

Ῠ∗, the action (4.1) turns into the tangent bundle action

S =

∫

d8z
{

K(Φ,Φ†) + ln det
(

�
m − (

�
m + Φ†Φ)−1Σ†(

�
n + ΦΦ†)−1Σ

)}

=

∫

d8z
{

K(Φ,Φ†) + ln det
(

�
n − (

�
n + ΦΦ†)−1Σ (

�
m + Φ†Φ)−1Σ†

)}

. (4.12)

It is not difficult to see that

I = tr ln
(

�
m − (

�
m + Φ†Φ)−1Σ†(

�
n + ΦΦ†)−1Σ

)

= tr ln
(

�
n − (

�
n + ΦΦ†)−1Σ (

�
m + Φ†Φ)−1Σ†

)

(4.13)

is actually a scalar field on an open domain of the zero section of the tangent bundle. By

construction, Σ defines a holomorphic tangent vector with world indices. Instead of using

the coordinate basis, we can decompose tangent vectors with respect to the vielbein defined

in (A.2),

Σ → Σ̃ = s Σ s , Σ† → Σ̃† = s Σ† s . (4.14)

Then we readily obtain

I = tr ln
(

�
m − Σ̃†Σ̃

)

= tr ln
(

�
n − Σ̃Σ̃†

)

. (4.15)

Our consideration shows that the tangent bundle action

S =

∫

d8z
{

K(Φ,Φ†) + tr ln
(

�
m − Σ̃†Σ̃

)}

=

∫

d8z
{

K(Φ,Φ†) + tr ln
(

�
n − Σ̃Σ̃†

)}

. (4.16)

is well-defined under the following covariant conditions7

Σ̃†Σ̃ <
�

m ⇐⇒ Σ̃Σ̃† <
�

n . (4.17)

7For an Hermitian matrix H , H† = H , the notation H > 0 means that H is positive definite.
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In appendix A, the curvature tensor of the Grassmannian is computed, eq. (A.5). It follows

from (A.5) that the Taylor expansion of (4.16) in powers of Σ and Σ̄ can be represented in

the universal form (2.11).

By comparing the equations (4.8) and (4.14), one can see that Σ̃ coincides with Σ0.

Nevertheless, here and below we prefer to use the “tilde” notation for (co)tangent vectors

decomposed vectors with respect to the vielbein (A.2).

Let us derive the cotangent bundle over the Grassmann manifold. In order to obtain it,

we need to dualize the complex linear superfields Σ = (Σiα) in (4.12) into chiral superfields

ψ = (ψαi) forming the components of a cotangent vector. To apply the relevant Legendre

transformation, the action (4.12) is to be replaced by the following one

S =

∫

d8z

{

K(Φ,Φ†) + tr ln
(

�
m − sU † s2Us

)

+
1

2
tr (Uψ) +

1

2
tr (ψ†U †)

}

, (4.18)

where U = (U iα) is a complex unconstrained superfield. By construction, U is a tangent

vector at the point Φ of the base manifold. Therefore ψ is a one-form at the same point.

Varying the action with respect to ψ gives U = Σ, and then one obtains the original

action (4.12). On the other hand, varying U allows one to express U in terms of Φ, ψ and

their conjugates, thus ending up with a dual formulation.

In order to simplify further expressions and to make symmetry properties more trans-

parent, it is useful to decompose the tangent and cotangent vectors with respect to the

vielbein (A.2),

U → Ũ = sU s , ψ → ψ̃ = s−1ψ s−1 . (4.19)

Then, the action becomes

S =

∫

d8z

{

K(Φ,Φ†) + tr ln
(

�
m − Ũ † Ũ

)

+
1

2
tr (Ũ ψ̃) +

1

2
tr (ψ̃†Ũ †)

}

. (4.20)

We should point out that it is the variables ψ which are chiral, while their covariant

counterparts, ψ̃, obey a generalized chirality constraint. To eliminate the auxiliary fields

Ũ and Ũ †, we consider their equations of motion:

1

2
ψ̃ = (

�
m − Ũ †Ũ)−1Ũ † = Ũ †(

�
n − Ũ Ũ †)−1 , (4.21)

and the conjugate equation. These lead to

(
�

n − Ũ Ũ †)−1 =
1

2

(

�
n ±

√

�
n + ψ̃†ψ̃

)

.

We have to choose the “plus” solution in order to satisfy the requirement that ψ̃†ψ̃ → 0

implies Ũ Ũ † → 0 and vice versa. Thus

(
�

n − Ũ Ũ †)−1 =
1

2

(

�
n +

√

�
n + ψ̃†ψ̃

)

. (4.22)

We also readily obtain

1

2
Ũ ψ̃ = −

1

2

(

�
n −

√

�
n + ψ̃†ψ̃

)

. (4.23)
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As a result the action (4.20) turns into

S =

∫

d8z

{

K(Φ,Φ†) − tr ln
(

�
n +

√

�
n + ψ̃†ψ̃

)

+ tr

√

�
n + ψ̃†ψ̃

}

=

∫

d8z

{

K(Φ,Φ†) − tr ln
(

�
m +

√

�
m + ψ̃ψ̃†

)

+ tr

√

�
m + ψ̃ψ̃†

}

. (4.24)

This action defines the cotangent bundle formulation for the N = 2 supersymmetric sigma

model (4.1) associated with the Grassmannian Gm,n+m(C).

5. The (co)tangent bundle over SO(2n)/U(n) and Sp(n)/U(n)

For the Hermitian symmetric spaces SO(2n)/U(n) and Sp(n)/U(n), the Kähler potentials

are known to be

K(Φ,Φ†) = ln det(
�

n + Φ†Φ) = ln det(
�

n + ΦΦ†) , (5.1)

with the constraint (3.28) imposed on the variables Φ = (Φij) and Φ† = (Φ̄j̄ī), where

i, j = 1, . . . n. The Kähler metric can be read off as

gik,l̄j̄ =

( �
n

1n + Φ†Φ

)

kl̄

( �
n

�
n + ΦΦ†

)

j̄i

, (5.2)

where we have used (4.4).

The N = 2 supersymmetric sigma model (4.1) associated to (5.1) is generated by the

Lagrangian (4.5), but now Υ has to obey the constraint

ΥT = −εΥ . (5.3)

The latter follows from (3.28) and, in particular, it requires

ΣT = −εΣ . (5.4)

Since the manifolds under consideration are imbedded into Grassmannians, the equations

of motion for the auxiliary superfields have the form (4.6), and their solution is given

by (4.8). It follows from (4.8)

Σ ≡
∂Υ∗

∂ζ

∣

∣

∣

ζ=0
= s̄−1Σ0 s−1 , (5.5)

where we have used the identity (3.30) which holds for the manifolds SO(2n)/U(n) and

Sp(n)/U(n). Requiring ΣT
0 = −εΣ0, it then follows from (5.5) that Σ indeed obeys the

algebraic constraint (5.4).

Now, it is obvious that the tangent bundle action for the symmetric spaces

SO(2n)/U(n) and Sp(n)/U(n) is given by eq. (4.12) with m = n.

To derive the cotangent bundle formulation, we can again use the first-order ac-

tion (4.18) with m = n in which, however, the tangent U = (U ij) and cotangent ψ = (ψij)

variables must obey the algebraic conditions

UT = −ε U , ψT = −ε ψ . (5.6)
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The equations of motion for U and U † should respect these symmetry conditions. At

first sight, one could then think that the equation (4.21) should be modified in order to

accommodate these conditions. Fortunately, the right-hand side of (4.21) automatically

enjoys the desirable symmetry conditions,

ψ̃ ≡ 2 (
�

n − Ũ †Ũ)−1Ũ † = 2 Ũ †(
�

n − Ũ Ũ †)−1 = −ε ψ̃T (5.7)

provided U is chosen to obey the corresponding algebraic constraint in (5.6), UT = −ε U ,

and therefore ŨT = −ε Ũ . As a result, all the steps implemented below eq. (4.21) to

derive (4.24), remains valid in the case under consideration.

We conclude that the action (4.24) with m = n defines the cotangent bundle formu-

lation for the N = 2 supersymmetric sigma model (4.1) associated with the symmetric

spaces SO(2n)/U(n) and Sp(n)/U(n).

6. The (co)tangent bundle over SO(n + 2)/SO(n) × SO(2)

For the N = 2 supersymmetric sigma model (2.1) associated with the Hermitian symmetric

space SO(n+2)/SO(n)×SO(2), the (co)tangent bundle formulations have been studied in

ref. [12]. The approach of [12] was based on implementing the following steps: (i) construct

a coset representative in the case n = 2; (ii) apply it to construct the corresponding solution

Υ∗(ζ); (iii) make use of the latter in order to guess the explicit form of Υ∗(ζ) for n > 2.

In this section, we are going to address the same problem by different means – the coset

representative (3.67) allows us to carry out the scheme described in section 2 for general

n. As is explained below, this leads to somewhat different conclusions for the cotangent

bundle formulation.

The Kähler potential of the quadric surface [35 – 37] is8

K(Φ, Φ̄) =
1

2
ln

4

z2
−

, z2
− =

4

1 + 2Φ†Φ + |ΦTΦ|2
. (6.1)

Its N = 2 extension is given by

K(Υ, Ῠ) =
1

2
ln

(

1 + 2ῨTΥ + ΥTΥῨTῨ
)

. (6.2)

From here we read off the equations of motion for the auxiliary superfields

0 =

∮

dζ

ζ
ζn Ῠ + Υ ῨTῨ

1 + 2ῨTΥ + ΥTΥ ῨTῨ
, n ≥ 2 . (6.3)

The solution to (6.3) is obtained from (3.74) by replacing Υ → Σ0ζ and Υ′ → Υ∗(ζ), with

Σ0 a tangent vector at Φ = 0. Then, we have

Υ∗(ζ) =
Φ + (2/z−)AΣ0 ζ − Φ̄ ΣT

0 Σ0 ζ2

1 − 2Φ†Σ0 ζ + ΦTΦΣT
0 Σ0 ζ2

. (6.4)

8Taking the normalization r → r/
√

2 in ref. [12] gives our normalization.
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For the tangent vector Σ at Φ, we then obtain

Σ ≡
∂Υ∗

∂ζ

∣

∣

∣

∣

∣

ζ=0

=
2

z−
AΣ0 + 2Φ(Φ†Σ0) . (6.5)

Using eq. (6.5), one can express Σ0 via Σ with the aid of relations (3.71) and (3.72).

One derives

Φ†Σ0 =
1

4
z2
−

{

Φ†Σ + ΦTΦ ΦTΣ
}

,

ΦTΣ0 =
1

4
z2
−

{

(1 + 2|Φ|2)ΦTΣ − ΦTΦ Φ†Σ
}

,

ΣT
0 Σ0 =

1

4
z2
−ΣTΣ , (6.6)

Σ†
0Σ0 =

1

4
z2
−Σ†Σ +

1

8
z4
−

{

(1 + 2|Φ|2)ΦTΣ Σ†Φ̄

−ΦTΦ ΦTΣ Σ†Φ − ΦTΦ Φ†Σ Σ†Φ̄ − Φ†Σ Σ†Φ
}

.

These relations lead to the final form for the solution Υ∗:

Υ∗(ζ) =
Φ + ζΣ − (z2

−/2)
{

ζΦ(Φ†Σ + ΦTΦ ΦTΣ) + 1
2ζ2Φ̄ ΣTΣ

}

1 − 1
2z2

−

{

ζ(Φ†Σ + ΦTΦΦTΣ) − 1
2ζ2ΦTΦΣTΣ

} . (6.7)

Now let us turn to calculating the Lagrangian

L =
1

2πi

∮

dζ

ζ
K(Υ∗, Ῠ∗) . (6.8)

Considerations similar to those used to derive eq. (3.66) give

K(Υ∗, Ῠ∗) = K(Φ, Φ̄) +
1

2
ln

(

1 − 2Σ†
0Σ0 + |ΣT

0 Σ0|
2
)

−
1

2
ln x(ζ) −

1

2
ln x̆(ζ) , (6.9)

x(ζ) = 1 − 2Φ†Σ0 ζ + ΦTΦ ΣT
0 Σ0 ζ2 .

The last two terms in the expression for K(Υ∗, Ῠ∗) do not contribute to the Lagrangian

upon the integration over ζ. Using the third and forth formulas in (6.6), we obtain

L = K(Φ, Φ̄) +
1

2
ln

(

1 −
1

2
z2
−Σ†Σ −

1

4
z4
−

{

(1 + 2|Φ|2)ΦTΣ Σ†Φ̄

−ΦTΦ ΦTΣ Σ†Φ − ΦTΦ Φ†Σ Σ†Φ̄ − Φ†Σ Σ†Φ +
1

16
z4
−|Σ

TΣ|2
})

. (6.10)

The Lagrangian can be rewritten in a geometric form. In order to do that, we use the

metric of the compact quadric surface

gij̄ =
1

4
z2
−δij̄ +

1

8
z4
−

{

ΦiΦ̄j̄(1 + 2|Φ|2) − Φ̄īΦj − ΦiΦj(ΦTΦ) − Φ̄īΦ̄j̄(ΦTΦ)
}

. (6.11)

From this we have

gij̄Σ
iΣ̄j̄ =

1

4
z2
−|Σ|2 +

1

8
z4
−

{

(1 + 2|Φ|2)|ΦTΣ|2 − |Φ†Σ|2

− (ΦTΦ)(Φ†Σ̄)(Φ†Σ) − (ΦTΦ)(ΦTΣ)(ΦTΣ̄)
}

. (6.12)
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Thus

L = K(Φ, Φ̄) +
1

2
ln

(

1 − 2gij̄Σ
iΣ̄j̄ +

1

16
z4
−|Σ

TΣ|2
)

. (6.13)

Here the second term is a scalar field on the tangent bundle. Therefore, the combination

z4
−|Σ

TΣ|2 must be a scalar constructed in terms of the tangent vector Σi and its conjugate,

the metric gij̄ and the Riemann curvature Rij̄kl̄ ≡ ∂k∂̄l̄gij̄−gmn̄∂mgij̄ ∂̄n̄gkl̄, with ∂i = ∂/∂Φi.

It is sufficient to determine such an expression at any given point of the base manifold, say

at Φ = 0, since the base manifold is a symmetric space. This gives

2(gij̄Σ
iΣ̄j̄)2 +

1

2
Rij̄kl̄Σ

iΣ̄j̄ΣkΣ̄l̄ =
1

16
z4
−|Σ

TΣ|2 . (6.14)

As a result, we arrive at the tangent bundle action [12]

S =

∫

d8z

{

K(Φ, Φ̄) +
1

2
ln

(

1 − 2gij̄Σ
iΣ̄j̄ + 2(gij̄Σ

iΣ̄j̄)2 +
1

2
Rij̄kl̄Σ

iΣ̄j̄ΣkΣ̄l̄
)

}

. (6.15)

Note that the tangent vector in (6.15) should be constrained as follows:

1 − 2gij̄Σ
iΣ̄j̄ + 2(gij̄Σ

iΣ̄j̄)2 +
1

2
Rij̄kl̄Σ

iΣ̄j̄ΣkΣ̄l̄ > 0 ,

gij̄Σ
iΣ̄j̄ < 1 . (6.16)

To make the action (6.15) well-defined, we actually need only the first constraint in (6.16).

The latter can be shown to imply gij̄Σ
iΣ̄j̄ 6= 1, and therefore its space of solutions consists of

two connected components. The second constraint in (6.16) picks up one of the components.

Finally, it remains to dualize the tangent bundle action (6.15) in order to generate the

cotangent bundle formulation. The derivation is very similar to that performed for the

non-compact quadric surface in section 10 and appendix B. Here we only give the result:

S =

∫

d8z

{

K(Φ, Φ̄) −
1

2
ln

(

Λ +

√

2(Λ + gī jψ̄īψj)
)

+
1

4

(

Λ +

√

2(Λ + gījψ̄īψj)

)

+
1

2

(

gī jψ̄īψj

)2
+ 1

4Rījk̄lψ̄īψjψ̄k̄ψl

Λ +
√

2
(

Λ + gī jψ̄īψj

)

}

, (6.17)

where

Λ = 1 +

√

1 + 2gī jψ̄īψj + 2(gī jψ̄īψj)2 +
1

2
Rījk̄lψ̄īψjψ̄k̄ψl . (6.18)

The dualization was also studied in ref. [12]. The derivation was performed in the

case n = 2 case and it was claimed that the cotangent bundle action should be valid for

general n case since it is written in geometric terms. In the present paper, the cotangent

bundle action is derived for general n, and its explicit form is different from that obtained

in ref. [12].
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7. Algebraic setup: non-compact case

This section is devoted to the construction of coset representatives for the four series of

non-compact Hermitian symmetric spaces.

7.1 The symmetric space U(n,m)/U(n) × U(m)

The non-compact Hermitian symmetric space U(n,m)/U(n)×U(m) can be identified with

an open subset of Gm,n+m(C). This subset consists of those m-planes in C
n+m which obey

the equation

x† Ω x > 0 , Ω =

(

−
�

n 0

0
�

m

)

. (7.1)

Here x is a complex (n + m) × m matrix of rank m,

x = (xI
β) =

(

xi
β

xαβ

)

=

(

x̃

x̂

)

, i = 1, . . . , n α, β = 1, . . . ,m (7.2)

which is defined modulo arbitrary transformations of the form

x → x g , g ∈ GL(m, C) . (7.3)

One of the consequences of eq. (7.1) is that x̂ ∈ GL(m, C).

By applying a transformation of the form (7.3), one can turn x into a matrix u under

the equation

u† Ω u = û†û − ũ†ũ =
�

m −→ det û 6= 0 . (7.4)

With such a choice, the ‘gauge’ freedom (7.3) reduces to

u → u g , g ∈ U(m) . (7.5)

We further represent û according to eq. (3.5), with s being a uniquely chosen positive

definite Hermitian matrix. Then, eq. (7.4) becomes

û†û − ũ†ũ = h−1s2 h − ũ†ũ =
�

m . (7.6)

Let us introduce

G(u) =

(

�
n + ũh−1λ(s)hũ† ũh−1

h ũ† s

)

, λ(s) =

�
m

�
m + s

. (7.7)

The matrix G(u) has the properties

G†(u) = G(u) , G(u) ∈ SU(n,m) . (7.8)

Another crucial feature of G(u) is that it enjoys the property (3.12), with u0 defined

in (3.11). In other words, G(u) is a global coset representative for U(n,m)/U(n) × U(m).
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Global complex coordinates on U(n,m)/U(n) × U(m)

u =

(

ũ

û

)

→

(

ũ û−1

�
m

)

=

(

ũ h−1s−1

�
m

)

≡

(

Φ
�

m

)

. (7.9)

Eq. (7.6) is equivalent to

�
m − Φ†Φ = s−2 . (7.10)

Since s > 0, we equivalently have

Φ†Φ <
�

m . (7.11)

This relation defines a classical bounded symmetric domain [40, 31]. Now, the coset rep-

resentative (7.7) turns into

G(Φ, Φ̄) =

(

�
n + Φ s λ(s) s Φ† Φ s

s Φ† s

)

. (7.12)

The coset representative obtained can also be rewritten in the form

G(Φ, Φ̄) =

(

s Φ s

Φ† s s

)

, (7.13)

where the matrices s and s are defined as

s2 =

�
n

�
n − Φ†Φ

, s2 =

�
n

�
n − ΦΦ†

, Φs2 = s2Φ , s2Φ† = Φ†s2 . (7.14)

7.2 The symmetric spaces SO∗(2n)/U(n) and Sp(n, R)/U(n)

Following [31], the Hermitian symmetric spaces SO∗(2n)/U(n) and Sp(n, R)/U(n) can be

identified with special open domains in Gn,2n(C) consisting of those n-planes in C
2n which

obey the constraints

x† Ω x > 0 , xT
J ε x = 0 , Ω =

(

−
�

n 0

0
�

n

)

. (7.15)

Here the matrix J ε is defined in (3.25), with ε = +1 corresponding to SO∗(2n), and ε = −1

to Sp(n, R). It is pertinent to recall the definition of the groups SO∗(2n) and Sp(n, R) (see,

e.g. [39]):

G =
{

g ∈ SU(n, n) , gT
J ε g = J ε

}

, ε =

{

+1 , for SO∗(2n) ,

−1 , for Sp(n, R) .
(7.16)

We can introduce global complex coordinates on the manifold,

X ∼

(

Φ
�

n

)

, ΦT + εΦ = 0 , (7.17)
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with the n × n matrix Φ constrained as

Φ†Φ <
�

n . (7.18)

In the case n = m, if we choose Φ in (7.13) to be antisymmetric or symmetric,

ΦT = −εΦ, then s = s̄, with s̄ the complex conjugate of s. As a result, the coset rep-

resentative (7.13) becomes

Gε(Φ, Φ̄) =

(

s̄ Φ s

−εΦ̄ s̄ s

)

, Gε(Φ, Φ̄) ∈

{

SO∗(2n) , ε = +1 ,

Sp(n, R) , ε = −1 .
(7.19)

7.3 The symmetric space SO0(n, 2)/SO(n) × SO(2)

As a real manifold, the Hermitian symmetric space9 SO0(n, 2)/SO(n) × SO(2) can be

identified [35] with an open subset of the oriented Grassmann manifold G̃2,n+2(R). In the

notation of subsection 3.3, see eqs. (3.41) and (3.42), consider the following domain in

G̃2,n+2(R):

M =
{

x ∈ G̃2,n+2(R) , xT Ω x > 0
}

, Ω =

(

−
�

n 0

0
�
2

)

. (7.20)

By construction, this domain is a transformation space of the group O(n, 2). It follows

from (7.20) that the 2×2 block x̂ is non-singular, x̂ ∈ GL(2, R). As a topological space, the

domain M consists of two connected components with empty intersection, M = M+∪M−,

defined as

M+ =
{

x ∈ M , det x̂ > 0
}

; M− =
{

x ∈ M , det x̂ < 0
}

. (7.21)

With respect to the action of the subgroup SO0(n, 2) ∈ O(n, 2), the sub-domains M+

and M− can be shown to be the orbits. We identify the Hermitian symmetric space

SO0(n, 2)/SO(n) × SO(2) with the orbit M+.

For x ∈ M+, its equivalence class contains a matrix

u = (uI
α) =

(

ũ

û

)

(7.22)

constrained to obey

uT Ω u = ûTû − ũTũ =
�
2 , det û > 0 . (7.23)

We can further represent

û = s h , s = sT = (sαβ) , h ∈ SO(2) , (7.24)

with s positive definite. Under eq. (7.23), the ‘gauge’ freedom (3.42), reduces to

u ∼ ug , g ∈ SO(2) . (7.25)

9Here SO0(n, 2) denotes the connected component of the identity in O(n, 2).
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This residual freedom can be completely fixed by choosing in (7.24) h =
�
2.

Let us introduce the coset representative

G(u) =

(

�
n + ũh−1λ(s)hũT ũh−1

h ũT s

)

, λ(s) =

�
2

�
2 + s

. (7.26)

The crucial property of G(u) is

G(u)u0 =

(

ũh−1

s

)

, u0 =

(

ũ0

û0

)

=

(

0
�
2

)

. (7.27)

Introduce a complex (n + 2)-vector

w = (wI) := (uI
1 + iuI

2) =

(

w̃

ŵ

)

≡

(

ϕ

z

)

, ϕ = (ϕi) , z =

(

z1

z2

)

. (7.28)

Now, the first equation in (7.23) is equivalent to

wTΩ w = −ϕTϕ + (z1)
2 + (z2)

2 = 0 , (7.29)

w†Ω w = −ϕ†ϕ + |z1|
2 + |z2|

2 = 2 . (7.30)

The ‘gauge’ freedom (7.25) becomes

w ∼ ei σw , σ ∈ R . (7.31)

In what follows, we choose the gauge condition h =
�
2. Recall that s = sT is positive

definite, that is

s =

(

s11 s12

s12 s22

)

, s11 > 0 , s22 > 0 , s11s22 − (s12)
2 > 0 . (7.32)

These results tell us that both the components of z,
(

z1

z2

)

:=

(

(s h)11 + i (s h)12
(s h)12 + i (s h)22

)

=

(

s11 + i s12

s12 + i s22

)

, (7.33)

are non-vanishing, z1,2 6= 0. If we further introduce new variables

z± = z1 ± i z2 , (7.34)

then one readily sees10

z− = z− = s11 + s22 > 0 ,
∣

∣

∣

z+

z−

∣

∣

∣

2
< 1 . (7.35)

Finally, introducing projective variables

Φ =
ϕ

z−
, ρ =

z+

z−
, (7.36)

10In deriving eq. (7.35), we have fixed the gauge freedom (7.31) by imposing the condition h = �2. In

general, the expression for z− is as follows: z− = ei σ(s11 + s22), with σ a real parameter.
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the equations (7.29) and (7.30) turn into

−ΦTΦ + ρ = 0 , (7.37)

−2Φ†Φ + 1 + |ρ|2 =
4

(z−)2
. (7.38)

In conjunction with eq. (7.35), we now see that the n complex variables Φ = (Φi) span the

domain

−2Φ†Φ + 1 + |ΦTΦ|2 > 0 , |ΦTΦ| < 1 . (7.39)

These conditions define a classical bounded symmetric domain [40, 35, 36].

Let us consider an isometry transformation g ∈ SO0(n, 2).

g =

(

A B

C D

)

, gTΩ g = Ω , (7.40)

or equivalently

ATA − CTC =
�

n , DTD − BTB =
�
2 , ATB = CTD . (7.41)

The fact that g belongs to the connected component of the identity in O(n, 2), is expressed

as follows:

detA > 0 , det D > 0 . (7.42)

The linear action u → u′ = gu induces the holomorphic fractional linear transformation

Φ → Φ′ =
{

(1,−i)
(

C Φ + D Γ(Φ)
)}−1{

AΦ + B Γ(Φ)
}

,

Γ(Φ) =
1

2

(

1 + ΦTΦ

i(1 − ΦTΦ)

)

. (7.43)

Here we have used the fact that z− transforms as follows:

z′−
z−

= (1,−i)
(

C Φ + D Γ(Φ)
)

≡ eΛ(Φ) . (7.44)

Unlike z−, its transform z′− is no longer real, but its phase is a gauge degree of freedom.

The Kähler potential [35, 36, 41] is

K(Φ, Φ̄) = −
1

2
ln

(

1 − 2Φ†Φ + |ΦTΦ|2
)

. (7.45)

Under the holomorphic isometry transformation (7.43), it changes as

K(Φ′, Φ̄′) = K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) , (7.46)

with Λ(Φ) given in (7.44). This can be seen from the identity

1 − 2Φ′†Φ′ + |ρ′|2 =
(

1 − 2Φ†Φ + |ρ|2
)

∣

∣

∣

z−
z′−

∣

∣

∣

2
, (7.47)
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in conjunction with eq. (7.44).

Let us turn to the problem of expressing the coset representative (7.26) in terms of the

complex coordinates introduced above. In the gauge h =
�
2 we can rewrite G(u) as

G(Φ, Φ̄) =

(

s ũ

ũT s

)

≡

(

A B

C D

)

, (7.48)

where

s2 =
�

n + ũ ũT , s2 =
�
2 + ũTũ . (7.49)

For the matrix blocks in (7.48) we then get

A =

√

�
n +

z2
−

2
(ΦΦ† + Φ̄ΦT) ,

B =
1

2
z−(Φ , Φ̄) γ , C =

1

2
z−γ†

(

Φ†

ΦT

)

,

D =
1

2
γ†

√

�
2 +

z2
−

2
∆ γ , (7.50)

where

γ =

(

1 − i

1 i

)

, ∆ =

(

Φ†Φ ΦTΦ

ΦTΦ Φ†Φ

)

. (7.51)

Eq. (7.38) gives the expression for z− in terms of Φ and its conjugate. The isometry

transformation G(Φ, Φ̄) ∈ SO0(n, 2) maps the origin, Φ0 = 0, to the point Φ. On a generic

point Υ of the symmetric space, it acts by the rule:

Υ → Υ′ =
{

(1,−i)
(

C Υ + D Γ(Υ)
)}−1{

AΥ + B Γ(Υ)
}

, (7.52)

with the two-vector Γ(Υ) defined similarly to (7.43).

It is easy to check that the matrix D in (7.50) possesses the following equivalent

representation:

D =
1

4
z−γ†F γ , F =

(

1 ΦTΦ

ΦTΦ 1

)

. (7.53)

One can also directly verify that
(

Φ†

ΦT

)

A =
1

2
γ D γ†

(

Φ†

ΦT

)

=
1

2
z−F

(

Φ†

ΦT

)

. (7.54)

Another useful piece of information is that the first equation in (7.41) is equivalent, in the

case of G(Φ, Φ̄), to

ATA =
�

n +
1

2
z2
−

(

Φ, Φ̄
)

(

Φ†

ΦT

)

. (7.55)
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8. The (co)tangent bundle over U(n, m)/U(n) × U(m)

The Kähler potential in this cases is given as

K(Φ,Φ†) = − ln det(
�

m − Φ†Φ) = − ln det(
�

n − ΦΦ†) , (8.1)

where Φ = (Φiα) and Φ† = (Φ̄ᾱī). The Kähler metric can be read off to be

giα,β̄j̄ =

( �
m

�
m − Φ†Φ

)

αβ̄

( �
n

�
n − ΦΦ†

)

j̄i

. (8.2)

where we have used identities similar to eq. (4.4),
�

n
�

n − ΦΦ†
Φ = Φ

�
m

�
m − Φ†Φ

, Φ†

�
n

�
n − ΦΦ†

=

�
m

�
m − Φ†Φ

Φ† . (8.3)

The explicit structure of the Kähler potential forces us to choose

K(Υ, Ῠ) = − ln det(
�

m − ῨTΥ) = − ln det(
�

n − ΥῨT) (8.4)

in the action (4.1). The equations of motion for the auxiliary superfields are:
∮

dζ

ζ
ζn

(

1m − ῨT
∗ Υ∗

)−1
ῨT

∗ = 0 , n ≥ 2 . (8.5)

Their solution, Υ∗(ζ), is obtained by applying the coset representative (7.12) to (2.17).

Υ∗ =
{

(
�

n + Φλs2Φ†)Σ0s
−1ζ + Φ

}

(
�

m + sΦ†Σ0s
−1ζ)−1 . (8.6)

From here one reads off the tangent vector at Φ

Σ ≡
∂Υ∗

∂ζ

∣

∣

∣

∣

∣

ζ=0

= (
�

n + Φλs2Φ† − ΦsΦ†)Σ0s
−1 = (

�
n − ΦλsΦ†)Σ0 s−1

= s−1Σ0 s−1 . (8.7)

This result allows us to express Σ0 in terms of Σ. Let us substitute the solution (8.6) into

the potential (8.4).

K(Υ∗, Ῠ∗) = − ln det
(

�
m − ῨT

∗ Υ∗

)

= − ln det
(

�
m − Φ†Φ + s−1Σ†

0Σ0s
−1

)

+ ln det
(

�
m −

1

ζ
s−1Σ†

0Φs
)

+ ln det
(

�
m + sΦ†Σ0s

−1ζ
)

. (8.8)

Here we have used eqs. (7.7) and (7.10), and their corollary

−Φs2Φ† + (
�

n + Φλs2Φ†)2 =
�

n . (8.9)

From (8.8) we obtain the tangent bundle action

S =

∫

d8z
{

K(Φ,Φ†) − ln det
(

�
m + (

�
m − Φ†Φ)−1Σ†(

�
n − ΦΦ†)−1Σ

)}

=

∫

d8z
{

K(Φ,Φ†) − ln det
(

�
n + (

�
n − ΦΦ†)−1Σ (

�
m − Φ†Φ)−1Σ†

)}

, (8.10)
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where K(Φ,Φ†) is the Kähler potential, eq. (8.1). Unlike the compact case, eq. (4.17), no

restrictions on the tangent variables Σ occur.

By construction, the theory with action (8.10) is invariant under the isometry group

U(n,m) of the base manifold. However, the symmetry properties are somewhat hidden

in the action constructed. To make them manifest, it is useful to decompose the tangent

vectors with respect to the vielbein (A.7):

Σ → Σ̃ = s Σ s , Σ† → Σ̃† = s Σ† s , (8.11)

similarly to the compact case. Given an isometry transformation, it proves to act on Σ̃ as an

induced local transformation from the isotropy group U(n)×U(m). Such a transformation

acts on Σ̃ as follows:

Σ̃ → gLΣ̃ gR, gL ∈ U(n) , gR ∈ U(m) . (8.12)

This implies that the tangent bundle action

S =

∫

d8z
{

K(Φ,Φ†) − tr ln
(

�
m + Σ̃†Σ̃

)}

=

∫

d8z
{

K(Φ,Φ†) − tr ln
(

�
n + Σ̃Σ̃†

)}

(8.13)

is indeed U(n,m)-invariant. In appendix A, the curvature tensor of the symmetric space

U(n,m)/U(n) × U(m) is computed, eq. (A.10). It follows from (A.10) that the Taylor

expansion of (8.13) in powers of Σ and Σ̄ (in the domain Σ̃†Σ̃ <
�

m) can be represented

in the universal form (2.11).

Derivation of the cotangent bundle formulation is very similar to the compact case.

One introduces the first-order action

S =

∫

d8z

{

K(Φ,Φ†) − tr ln
(

�
m + sU †s2Us

)

+
1

2
tr (Uψ) +

1

2
tr (ψ†U †)

}

, (8.14)

where U = (U iα) is a complex unconstrained superfield, and ψ = (ψαi) is a chiral superfield.

By construction, U is a tangent vector at the point Φ of the base manifold. Thus ψ should

be a one-form at the same point. In order to derive the cotangent bundle formulation, the

unconstrained superfield variables, U and U †, have to be eliminated with the aid of their

equations of motion. This procedure is considerably simplified if one deals with (co)tangent

vectors decomposed with respect to the vielbein (A.7),

U → Ũ = sU s , ψ → ψ̃ = s−1ψ s−1 . (8.15)

Repeating the technical steps described in the case of the Grassmannian, we end up

with the cotangent bundle action

S =

∫

d8z

{

K(Φ,Φ†) + tr ln
(

�
n +

√

�
n − ψ̃†ψ̃

)

− tr

√

�
n − ψ̃†ψ̃

}

=

∫

d8z

{

K(Φ,Φ†) + tr ln
(

�
m +

√

�
m − ψ̃ψ̃†

)

− tr

√

�
m − ψ̃ψ̃†

}

. (8.16)
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This action is well-defined under the following constraints:

Φ†Φ <
�

m , ψ̃†ψ̃ <
�

n . (8.17)

From here it follows that the hyperkähler structure is defined on a unit ball of the zero

section of the cotangent bundle over U(n,m)/U(n) × U(m).

Consider the simplest case, n = m = 1, analysed in [13]. This choice corresponds to

the complex hyperbolic line H1 = SU(1, 1)/U(1). It is known that any compact Riemann

surface Σ of genus g > 1 can be obtained from H1 by factorization with respect to some

discrete subgroups of SU(1, 1), see e.g. [42]. Using the hyperkähler metric constructed on

the open disc bundle in T ∗H1, we then can generate a hyperkähler structure defined on an

open neighbourhood of the zero section of the cotangent bundle T ∗Σ.

9. The (co)tangent bundle over SO∗(2n)/U(n) and Sp(n, R)/U(n)

For the non-compact Hermitian symmetric spaces SO∗(2n)/U(n) and Sp(n, R)/U(n), the

Kähler potentials are

K(Φ,Φ†) = − ln det(
�

n − Φ†Φ) = − ln det(
�

n − ΦΦ†) , (9.1)

with Φ = (Φij) a complex n × n matrix obeying the constraint (7.17). The Kähler metric

is readily obtained to be

gik,l̄j̄ =

( �
n

1n − Φ†Φ

)

kl̄

( �
n

�
n − ΦΦ†

)

j̄i

, (9.2)

where we have used eq. (8.3).

In complete analogy with the compact case, the (co)tangent bundle formulations can

be deduced from those already derived for the symmetric space U(n,m)/U(n) × U(m),

eqs. (8.10) and (8.16). In these actions, one should simply set m = n and require the

tangent linear Σ and cotangent chiral ψ variables to obey the algebraic constrains

ΣT = −εΣ , ψT = −ε ψ . (9.3)

The cotangent variables ψ̃ in (8.16) can now be expressed via ψ in two equivalent forms:

ψ̃ = s−1ψ s−1 = s−1ψ s̄−1 . (9.4)

One can readily fill the missing detail.

10. The (co)tangent bundle over SO0(n, 2)/SO(n) × SO(2)

In accordance with the discussion in section 7.3, the Kähler potential [35, 36, 41] is

K(Φ, Φ̄) = −
1

2
ln

4

z2
−

,
4

z2
−

= 1 − 2Φ†Φ + |ΦTΦ|2 . (10.1)
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Its N = 2 extension is given by

K(Υ, Ῠ) = −
1

2
ln

(

1 − 2ῨTΥ + ΥTΥ ῨTῨ
)

. (10.2)

The equations of motion for the auxiliary superfields are

0 =

∮

dζ

ζ
ζn −Ῠ + Υ ῨTῨ

1 − 2ῨTΥ + ΥTΥ ῨTῨ
, n ≥ 2 . (10.3)

Their solution, Υ∗(ζ), is obtained from (7.52) by replacing Υ → ζΣ0 and Υ′ → Υ∗(ζ). This

gives

Υ∗(ζ) =
Φ + (2/z−)AΣ0 ζ + Φ̄ ΣT

0 Σ0 ζ2

1 + 2Φ†Σ0 ζ + ΦTΦΣT
0 Σ0 ζ2

. (10.4)

From here

Σ =
dΥ∗

dζ

∣

∣

∣

ζ=0
=

2

z−
AΣ0 − 2Φ(Φ†Σ0) . (10.5)

Now, one can express Σ0 in (10.4) via Σ by making use of eqs. (7.54) and (7.55). One thus

derives

Φ†Σ0 =
1

4
z2
−

{

Φ†Σ − ΦTΦ ΦTΣ
}

,

ΦTΣ0 =
1

4
z2
−

{

(1 − 2|Φ|2)ΦTΣ + ΦTΦ Φ†Σ
}

,

ΣT
0 Σ0 =

1

4
z2
−ΣTΣ , (10.6)

Σ†
0Σ0 =

1

4
z2
−Σ†Σ −

1

8
z4
−

{

(1 − 2|Φ|2)ΦTΣ Σ†Φ̄

+ΦTΦ ΦTΣ Σ†Φ + ΦTΦ Φ†Σ Σ†Φ̄ − Φ†Σ Σ†Φ
}

.

The final form for Υ∗ is as follows:

Υ∗(ζ) =
Φ + ζΣ + (z2

−/2)
{

ζΦ(Φ†Σ − ΦTΦ ΦTΣ) + 1
2ζ2Φ̄ ΣTΣ

}

1 + 1
2z2

−

{

ζ(Φ†Σ − ΦTΦΦTΣ) + 1
2ζ2ΦTΦΣTΣ

} . (10.7)

We now have to evaluate the superfield Lagrangian

L =
1

2πi

∮

dζ

ζ
K(Υ∗, Ῠ∗) . (10.8)

Considerations similar to those used to derive eq. (7.47), can be used to show that

K(Υ∗, Ῠ∗) = K(Φ, Φ̄) −
1

2
ln

(

1 + 2Σ†
0Σ0 + |ΣT

0 Σ0|
2
)

+
1

2
ln x(ζ) +

1

2
ln x̆(ζ) , (10.9)

x(ζ) = 1 + 2Φ†Σ0 ζ + ΦTΦ ΣT
0 Σ0 ζ2 .
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Clearly, the last two terms in the expression for K(Υ∗, Ῠ∗) do not contribute to L. With

the aid of the third and fourth relations in (10.6) we obtain

L = K(Φ, Φ̄) −
1

2
ln

(

1 +
1

2
z2
−Σ†Σ −

1

4
z4
−

{

(1 − 2|Φ|2)ΦTΣ Σ†Φ̄

+ΦTΦ ΦTΣ Σ†Φ + ΦTΦ Φ†Σ Σ†Φ̄ − Φ†Σ Σ†Φ +
1

16
z4
−|Σ

TΣ|2
})

. (10.10)

This can be transformed to a more geometric form by taking two observations into account.

First, using the expression for the metric of the non-compact quadric surface

gij̄ =
1

4
z2
−δij̄ −

1

8
z4
−

{

ΦiΦ̄j̄(1 − 2|Φ|2) − Φ̄īΦj + ΦiΦj(ΦTΦ) + Φ̄īΦ̄j̄(ΦTΦ)
}

, (10.11)

we find

gij̄Σ
iΣ̄j̄ =

1

4
z2
−|Σ|2 −

1

8
z4
−

{

(1 − 2|Φ|2)|ΦTΣ|2 − |Φ†Σ|2

+ (ΦTΦ)(Φ†Σ̄)(Φ†Σ) + (ΦTΦ)(ΦTΣ)(ΦTΣ̄)
}

. (10.12)

Thus

L = K(Φ, Φ̄) −
1

2
ln

(

1 + 2gij̄Σ
iΣ̄j̄ +

1

16
z4
−|Σ

TΣ|2
)

. (10.13)

Second, we note that z4
−|Σ

TΣ|2 must be a scalar field on the tangent bundle, and therefore

it can be expressed solely in terms of the tensor quantities: the holomorphic tangent

vector Σi and its conjugate, the Riemann metric gij̄ , and finally the Riemann curvature

Rij̄kl̄ ≡ ∂k∂̄l̄gij̄ − gmn̄∂mgij̄ ∂̄n̄gkl̄, with ∂i = ∂/∂Φi. It is sufficient to determine such an

expression at any given point of the base manifold, say at Φ = 0, since the base manifold

is a symmetric space. This gives

2(gij̄Σ
iΣ̄j̄)2 −

1

2
Rij̄kl̄Σ

iΣ̄j̄ΣkΣ̄l̄ =
1

16
z4
−|Σ

TΣ|2 . (10.14)

As a result, we obtain the tangent bundle action

S =

∫

d8z

{

K(Φ, Φ̄) −
1

2
ln

(

1 + 2gij̄Σ
iΣ̄j̄ + 2(gij̄Σ

iΣ̄j̄)2 −
1

2
Rij̄kl̄Σ

iΣ̄j̄ΣkΣ̄l̄
)

}

,(10.15)

where K(Φ, Φ̄) is the Kähler potential of the non-compact quadric surface, eq. (10.1). It

follows from (10.13) that the action is well-defined on the tangent bundle.

Finally, let us dualize the tangent bundle action (10.15). In order to do that we replace

the action (10.15) with

S =

∫

d8z

{

K(Φ, Φ̄) −
1

2
ln

(

1 + 2gij̄U
iŪ j̄ + 2(gij̄U

iŪ j̄)2 −
1

2
Rij̄kl̄U

iŪ j̄UkŪ l̄

)

+
1

2
U iψi +

1

2
Ū īψ̄ī

}

(10.16)

where the tangent vectors U i are complex unconstrained superfields, and cotangent vectors

ψi are chiral superfields, D̄α̇ψi = 0. The variables U ’s and Ū ’s can be eliminated with the
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aid of their equations of motion. This turns the superfield Lagrangian into the hyperkähler

potential

H(Φ, Φ̄, ψ, ψ̄) = K(Φ, Φ̄) +
1

2
ln

(

Λ +
√

2(Λ − gī jψ̄īψj)
)

−
1

4

(

Λ +
√

2(Λ − gī jψ̄īψj)
)

+
1

2

(

gī jψ̄īψj

)2
− 1

4Rījk̄lψ̄īψjψ̄k̄ψl

Λ +
√

2
(

Λ − gī jψ̄īψj

)

, (10.17)

where

Λ = 1 +

√

1 − 2gī jψ̄īψj + 2(gī jψ̄īψj)2 −
1

2
Rījk̄lψ̄īψjψ̄k̄ψl . (10.18)

Here the one-form variables are constrained as follows:

1 − 2gī jψ̄ī ψj + 2(gī jψ̄ī ψj)
2 −

1

2
Rījk̄lψ̄ī ψj ψ̄k̄ ψl > 0 ,

gī jψ̄ī ψj < 1 . (10.19)

The derivation of the above results can be found in the appendix B.
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A. Curvature tensor for Grassmannians and related symmetric spaces

Using the standard formalism of nonlinear realizations, here we compute the curvature

tensor for the Grassmann manifold and symmetric spaces embedded into Grassmannians.

Our consideration is a streamlined version of Hua’s analysis [31].

Using the coset representative (3.23), we obtain

G−1dG = E + W , (A.1)

where E is the vielbein

E =

(

0 s dΦ s

−s dΦ† s 0

)

≡

(

0 E

−E† 0

)

, (A.2)

and W denotes the connection

W =

(

s−1ds + s ΦdΦ†s 0

0 s−1ds + s Φ†dΦ s

)

. (A.3)
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It is easy to check that the torsion vanishes,

T = dE + W ∧ E + E ∧ W = 0 . (A.4)

For the curvature we get

R = dW + W ∧ W

=

(

s dΦ ∧ s2 dΦ†s 0

0 s dΦ† ∧ s2 dΦ s

)

=

(

E ∧ E† 0

0 E† ∧ E

)

. (A.5)

It is quite transparent that the above results apply to the Hermitian symmetric spaces

SO(2n)/U(n) and Sp(n)/U(n) simply by restricting Φ to obey the appropriate algebraic

symmetry conditions.

Similar calculations can be performed in the non-compact case. For the symmetric

space U(n,m)/U(n) × U(m), the coset representative is given by eq. (7.13). One obtains

G−1dG = E + W , (A.6)

where the vielbein is

E =

(

0 sdΦ s

s dΦ†s 0

)

≡

(

0 E

E† 0

)

, (A.7)

and the connection has the form

W =

(

s−1ds − s ΦdΦ†s 0

0 s−1ds − s Φ†dΦs

)

. (A.8)

The corresponding geometry is again torsion-free,

T = dE + W ∧ E + E ∧ W = 0 . (A.9)

The curvature can be shown to be

R = dW + W ∧ W

=

(

−s dΦs ∧ sdΦ†s 0

0 −s dΦ†s ∧ sdΦs

)

=

(

−E ∧ E† 0

0 − E† ∧ E

)

. (A.10)

The results obtained for U(n,m)/U(n) × U(m) remain valid for the Hermitian sym-

metric spaces SO∗(2n)/U(n) and Sp(n, R)/U(n) if one restricts Φ to obey the appropriate

algebraic symmetry conditions.

B. Derivation of (10.17)

This appendix is devoted to the derivation of the hyperkähler potential (10.17). Since the

base manifold is a symmetric space, it is sufficient to implement the dualization, for the

action (10.16), at Φ = 0. The first-order Lagrangian

L = −
1

2
ln Ω +

1

2
U iΨi +

1

2
Ū iΨi , Ω = 1 + 2U †U + |UTU |2 (B.1)
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leads to the following equations of motion for Ū ’s and U ’s:

U i + Ū iUTU

Ω
=

1

2
Ψ̄i ,

Ū i + U iUTU

Ω
=

1

2
Ψi , (B.2)

where Ψ is a cotangent vector at Φ = 0. These equations imply

1

4
ΨTΨ =

UTU

Ω
,

1

4
ΨTΨ =

UTU

Ω
, (B.3)

and also

1

16

(

1 − 2Ψ†Ψ + |ΨTΨ|2
)

=

(

U †U

Ω
−

1

4

)2

. (B.4)

The latter is consistent if

1 − 2Ψ†Ψ + |ΨTΨ|2 > 0 . (B.5)

By construction, the correspondence between the tangent and cotangent variables should

be such that Υ → 0 ⇐⇒ Ψ → 0. This means that we are to choose the “minus” solution

of (B.4), that is

U †U

Ω
=

1

4

(

1 −
√

1 − 2Ψ†Ψ + |ΨTΨ|2
)

. (B.6)

Now, the results obtained above can be used to express Ω via Ψ and its conjugate. By

definition, we have

1

Ω
=

1

Ω2
+

2

Ω

U †U

Ω
+

∣

∣

∣

UTU

Ω

∣

∣

∣

2
. (B.7)

This is equivalent to

(

1

Ω
−

1

4
Λ

)2

=
1

16

(

Λ2 − |ΨTΨ|2
)

, (B.8)

where

Λ = 1 +
√

1 − 2Ψ†Ψ + |ΨTΨ|2 . (B.9)

The consistency of eq. (B.8) can be seen to require

Ψ†Ψ < 1 . (B.10)

Since for Ψ → 0 we should have Ω → 1, it is necessary to choose the “plus” solution

of (B.8), that is

4

Ω
= Λ +

√

Λ2 − |ΨTΨ|2 = Λ +
√

2(Λ − Ψ†Ψ) . (B.11)

The above consideration corresponds to the origin, Φ = 0, of the base manifold. To

extend these results to an arbitrary point Φ of the base manifold, we should replace

Ψ†Ψ → gī jψ̄īψj , |ΨTΨ|2 → 2(gī jψ̄ī ψj)
2 −

1

2
Rījk̄lψ̄ī ψj ψ̄k̄ ψl . (B.12)
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[3] U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear sigma

models, Nucl. Phys. B 222 (1983) 285.

[4] N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyperkähler metrics and
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[16] L. Alvarez-Gaumé and P.H. Ginsparg, Finiteness of Ricci flat supersymmetric nonlinear

sigma models, Commun. Math. Phys. 102 (1985) 311.

[17] C.M. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear sigma models and their
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